Set-Membership Conjugate Gradient Constrained Adaptive Filtering Algorithm for Beamforming

نویسندگان

  • Lei Wang
  • Rodrigo C. de Lamare
چکیده

We introduce a new linearly constrained minimum variance (LCMV) beamformer that combines the set-membership (SM) technique with the conjugate gradient (CG) method, and develop a low-complexity adaptive filtering algorithm for beamforming. The proposed algorithm utilizes a CG-based vector and a variable forgetting factor to perform the dataselective updates that are controlled by a time-varying bound related to the parameters. For the update, the CG-based vector is calculated iteratively (one iteration per update) to obtain the filter parameters and to avoid the matrix inversion. The resulting iterations construct a space of feasible solutions that satisfy the constraints of the LCMV optimization problem. The proposed algorithm reduces the computational complexity significantly and shows an enhanced convergence and tracking performance over existing algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Set-Membership Constrained Conjugate Gradient Beamforming Algorithms

In this work a constrained adaptive filtering strategy based on conjugate gradient (CG) and set-membership (SM) techniques is presented for adaptive beamforming. A constraint on the magnitude of the array output is imposed to derive an adaptive algorithm that performs data-selective updates when calculating the beamformer’s parameters. We consider a linearly constrained minimum variance (LCMV) ...

متن کامل

Low-Complexity Adaptive Set-Membership Reduced-rank LCMV Beamforming

This paper proposes a new adaptive algorithm for the implementation of the linearly constrained minimum variance (LCMV) beamformer. The proposed algorithm utilizes the setmembership filtering (SMF) framework and the reduced-rank joint iterative optimization (JIO) scheme. We develop a stochastic gradient (SG) based algorithm for the beamformer design. An effective time-varying bound is employed ...

متن کامل

Constrained adaptive filtering algorithms based on conjugate gradient techniques for beamforming

This article proposes constrained adaptive algorithms based on the conjugate gradient (CG) method for adaptive beamforming. The proposed algorithms are derived for the implementation of the beamformer according to the minimum variance and constant modulus criteria subject to a constraint on the array response. A CG-based weight vector strategy is created for enforcing the constraint and computi...

متن کامل

Set-Membership Adaptive Constant Modulus Algorithm with a Generalized Sidelobe Canceler and Dynamic Bounds for Beamforming

In this work, we propose an adaptive set-membership constant modulus (SMCM) algorithm with a generalized sidelobe canceler (GSC) structure for blind beamforming. We develop a stochastic gradient (SG) type algorithm based on the concept of SM filtering for adaptive implementation. The filter weights are updated only if the constraint cannot be satisfied. In addition, we also propose an extension...

متن کامل

Adaptive Set-Membership Reduced-Rank Least Squares Beamforming Algorithms

This paper presents a new adaptive algorithm for the linearly constrained minimum variance (LCMV) beamformer design. We incorporate the set-membership filtering (SMF) mechanism into the reduced-rank joint iterative optimization (JIO) scheme to develop a constrained recursive least squares (RLS) based algorithm called JIO-SM-RLS. The proposed algorithm inherits the positive features of reduced-r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1303.0890  شماره 

صفحات  -

تاریخ انتشار 2013